
Generated by Jive SBS on 2021-07-23-04:00
1

Basic Comparison of Python, Julia, R, Matlab
and IDL

February 20, 2018: An updated version of this analysis can be found HERE.

History:

• January 9, 2017 (Original ducument)
• February 28, 2017 (Added Problem 5 and Problem 6)
• June 22, 2017 (At the recommendation of Simon Byrne, edited the Julia script for Problem 6)
• July 26, 2017 (Simon Danish proposed different optimization options for solving Problem 3 with

Julia)

Comparing programming languages such as Python, Julia, R, etc. is not an easy task. Many
researchers and practinioners have attempted to determine how fast a particular language
performs against others when solving a specific problem (or a set of problems). Raschka
presents Matlab, Numpy, R and Julia while they performed matrix calculations (Raschka,
2014). Hirsch does a benchmarking analysis of Matlab, Numpy, Numba CUDA, Julia and
IDL (Hirsch, 2016). From his experiments, he states which language has the best speed
in doing matrix multiplication and iteration. Rogozhnikov uses the calculation of the log-
likelihood of normal distribution to compare Numpy, Cython, Parakeet, Fortran, C++, etc.
He draws conclusions on which ones of them are faster to solve the problem (Rogozhnikov,
2015). Puget determines how several languages scire in carrying out the LU factorization
(Puget, 2016).

All these analyses are important to assess how fast a language performs. However, focusing
only on the speed may not give us a good picture on the capability of each language. It
turns out if we compare how fast languages execute a given computation over the years, we
might reach different conclusions as some of them evolve over time (to be more efficiency in
solving a set of problems). To determine the usefulness of a language, we want to take into
consideration its accessibility (open source or commercial), its readability, its support base,
how it can interface with other languages, its strengths/weaknesses, the availabilty of a vast
collection of libraries.

https://modelingguru.nasa.gov/docs/DOC-2676
https://gist.github.com/SimonDanisch/ae046f3a0c78b26242e78fa9b139aa11#file-benchmark-jl

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
2

As we deal with legacy scientific applications (written in Fortran or C for instance), our
primary intent is not to find a new language that can be used to rewrite existing codes. We
rather want to identify and leverage "new" languages to facilitate and speed up pre/post-
processing, initialization and visualization procedures. As far as possible, we may want
to interface our legacy codes to "new" languages. We also intend to use new language to
prototype some applications before they are written in languages like Fortran and C.

In this work, we are intested in how each package handles loops and vectorization, reads
a large collection of netCDF files and does multiprocessing. The goal is not to highlight
which software is faster than the other but to provide basic information on the strengths and
weaknesses of individual packages when dealing with specific applications.

All the experiments presented here were done on Intel Xeon Haswell processor node.
Each node has 28 cores (2.6 GHz each) and 128 Gb of available memory. We consider the
following versions of the languages:

Language Version Open Source?

Python 2.7.1 Yes

Julia 0.6.0 Yes

R 3.2.2 Yes

IDL 8.5 No

Matlab R2016a No

GNU Compilers 6.1.0 Yes

Intel Compilers 17.0.0.098 No

Scala 2.12.1 Yes

Remark: We assume that Python refers to Numpy too.

We consider here six problems.

https://www.python.org/
http://julialang.org/
https://www.r-project.org/
http://www.harrisgeospatial.com/ProductsandSolutions/GeospatialProducts/IDL.aspx
https://www.mathworks.com/help/matlab/
https://gcc.gnu.org/
https://software.intel.com/en-us/intel-compilers
https://www.scala-lang.org/

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
3

Problem 1

Consider an arbitrary nxnx3 matrix A. We want to perform the following operations on A:

 A(i,j,1) = A(i,j,2)

 A(i,j,3) = A(i,j,1)

 A(i,j,2) = A(i,j,3)

For instance, in Python the code looks like:

for i in range(n):

 for j in range(n):

 A[i,j,0] = A[i,j,1]

 A[i,j,2] = A[i,j,0]

 A[i,j,1] = A[i,j,2]

The above code segment uses loops. We are also interested on how the same operations
are done using vectorization:

 A[:,:,0] = A[:,:,1]

 A[:,:,2] = A[:,:,0]

 A[:,:,1] = A[:,:,2]

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
4

The problem allows us to see how each language handles loops and vectorization. We
record the elapsed time needed to do the array assignments. The results are summarized
on the tables below.

Language Array/Matrix
Storage

Option n=5000 n=7000 n=9000

Python Row-major 19.12 37.49 61.97

Python + Numba 0.25 0.22 0.30

Julia Column-major 0.10 0.22 0.34

R Column-major 233.78 451.77 744,93

IDL Column-major 7.75 15.21 14.77

Matlab Column-major 2.20 4.11 6.80

Fortran Column-major gfortran 0.23 0.33 0.76

gfortran -O3 0.068 0.136 0.22

ifort 0.07 0.18 0.29

ifort -O3 0.068 0.136 0.22

C Row-major gcc 0.17 0.34 0.55

gcc -Ofast 0.09 0.18 0.37

icc 0.09 0.18 0.30

icc -Ofast 0.09 0.18 0.42

Scala Row-major 0.22 0.44 0.707

Table 1.1: Elapsed times obtained by copying a matrix using loops.

Language Option n=5000 n=7000 n=9000

Python 0.50 0.97 1.61

Python + Numba 0.36 0.54 0.77

Julia 0.46 0.73 1.09

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
5

R 3.55 6.95 11.46

IDL 0.56 1.60 2.93

Matlab 0.28 0.53 0.90

Fortran gfortran 0.14 0.28 0.50

gfortran -O3 0.096 0.18 0.30

ifort 0.16 0.30 0.50

ifort -O3 0.12 0.23 0.38

Table 1.2: Elapsed times obtained by copying a matrix using vectorization.

Apart from Julia, vectorization is the fastest method for accessing arrays/matrices.

Problem 2

We multiply two randomly generated nxn matrices A and B:

C=AxB

This problem shows the importance of taking advantage of built-in libraries available in each
language.

The elapsed times presented here only measure the times spent on the multiplication (as the
size of the matrix varies).

Language Option n=1500 n=1750 n=2000

Python intrinsic 0.49 0.80 0.95

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
6

Python + Numba
(loops)

3.6 6.28 13.4

Julia intrinsic 0.54 0.63 0.73

R intrinsic 12.09 19.18 28.63

IDL intrinsic 0.22 0.28 0.36

Matlab intrinsic 0.77 1.02 0.99

Fortran gfortran (loop) 24.01 42.57 83.66

gfortran -O3 (loop) 3.32 5.31 12.13

gfortran (matmul) 1.58 2.52 4.34

gfortran -O3 (matmul) 1.28 2.05 3.68

ifort (loop) 1.55 2.01 4.48

ifort -O3 (loop) 0.51 0.81 1.24

ifort (matmul) 1.56 2.47 4.48

ifort -O3 (matmul) 0.52 0.82 1.25

ifort (DGEMM) 0.19 0.23 0.33

C gcc (loop) 13.33 21.18 31.77

gcc -Ofast (loop) 1.34 2.35 4.30

icc (loop) 1.25 2.19 3.99

icc -Ofast (loop) 1.23 1.72 2.62

Scala Simple loop 10.76 18.22 32.30

with la4j 4.056 6.354 9.592

with JAMA 3.51 6.211 9.377

Table 2.1: Elapsed times (in seconds) obtained by multiplying two randomly generated
matrices.

The above table suggests that built-in functions are more appropriate to perform matrix
multiplication. DGEMM is far more efficient. It is important to note that DGEMM is more
suitable for large size matrices. If for instance n=100, the function matmul out performs
DGEMM. An interesting discussion on the performance of DGEMM and matmul using the
Intel Fortran compiler can be read at:

How to calculate a multiplication of two matrices efficiently?

https://software.intel.com/en-us/forums/intel-fortran-compiler-for-linux-and-mac-os-x/topic/269726

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
7

Problem 3

We find the numerical solution of the 2D Laplace equation:

Uxx + Uyy = 0

We use the Jacobi iterative solver. We are interested in fourth-order compact finite
difference scheme (Gupta, 1984):

Ui,j = (4(Ui-1,j + Ui,j-1 + Ui+1,j + Ui,j+1) + Ui-1,j-1 + Ui+1,j-1 + Ui+1,j+1 + Ui-1,j+1)/20

The Jacobi iterative solver stops when the difference of two consecutive approximations falls
below 10^{-6}.

Language Option n=100 n=150 n=200

Python 144.54 715.96 2196.97

Python + Numba 1.23 5.37 16.34

Julia 1.049 5.253 18.00

optimized_time_step 1.102 5.617 18.91

optimized_time_step_simd0.840 3.994 13.075

R 935.93 4560.91 -

IDL 95.48 498.23 1521.97

Matlab 5.06 12.50 23.40

Fortran gfortran 1.21 5.56 15.64

gfortran -O3 0.668 3.072 8.897

https://gist.github.com/SimonDanisch/ae046f3a0c78b26242e78fa9b139aa11#file-benchmark-jl
https://gist.github.com/SimonDanisch/ae046f3a0c78b26242e78fa9b139aa11#file-benchmark-jl

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
8

ifort 0.38 2.15 6.10

ifort -O3 0.536 2.46 7.15

C gcc 0.51 2.47 7.85

gcc -Ofast 0.21 1.04 3.18

gcc -fPIC -Ofast -O3
-xc -shared

1.139 5.7001 18.318

icc 0.45 2.23 6.78

icc -Ofast 0.32 1.60 4.87

Scala 0.69 2.81 7.63

Table 3.1: Elapsed times (in seconds) obtained by numerically solving the Poisson equation
using a Jacobi iterative solver with loops.

Language Option n=100 n=150 n=200

Python 2.52 11.66 47.13

Python + Numba 3.55 13.05 35.59

Julia 2.11 8.99 27.96

R 21.16 112.27 389.16

IDL 2.38 12.13 39.67

Matlab 3.57 8.01 16.17

Fortran gfortran 0.872 4.032 11.53

gfortran -O3 0.356 1.82 5.11

ifort 0.288 1.568 4.568

ifort -O3 0.288 1.560 4.284

Table 3.2: Elapsed times (in seconds) obtained by numerically solving the Poisson equation
using a Jacobi iterative solver with vectorization.

https://gist.github.com/SimonDanisch/ae046f3a0c78b26242e78fa9b139aa11#file-benchmark-jl
https://gist.github.com/SimonDanisch/ae046f3a0c78b26242e78fa9b139aa11#file-benchmark-jl

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
9

Problem 4

We have a set of daily NetCDF files (7305) covering a period of 20 years (1990-2009).
The files for a given month are in a sub-directory labeled YYYYMM (for instance 199001,
199008, 199011). We want to write a script that opens each file, reads a three-dimensional
variable (longitude/latitude/level), manipulates it and does a contour plot after all the files are
read. A pseudo code for the script reads:

Loop over the years

 Loop over the months

 Obtain the list of NetCDF files

 Loop over the files

 Read the variable (longitude/latitude/level)

 Compute the zonal mean average (new array of latitude/level)

 Extract the column array at latitude 86 degree South

 Append the column array to a "master" array (or matrix)

create a contour plot using the "master" array

(the x-axis should be the days (1 to 7035)to be converted into years)

(the y-axis should be the vertical pressure levels in log scale)

A sample plot obtained with Python is shown in the figure below:

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
10

This is the kind of problems that a typical user we support faces: a collection of thousands of
files that needs to be manipulated to extract the desired information. Having tools that allow
us to quickly read data from files (in formats such as NetCDF, HDF4, HDF5, grib) is critical
for the work we do.

We report in Table 4.1 the elapsed times it took to solve Problem 4 with the various
languages.

Language Elapsed time (s)

Python 1399

https://modelingguru.nasa.gov/servlet/JiveServlet/showImage/1503/fig_TimeSeries_AgeOfAir.png

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
11

Julia 1317 (no plot)

IDL 1689

R 2220

Matlab 1678

Table 4.1: Elapsed time (in seconds) obtained by manipulating 7305 NetCDF files on a
single processor. We were not able to produce the plot with Julia because we could not build
the plotting tool.

All the above runs were conducted on a node that has 28 cores. Basically, only one core
was used. We want to take advantage of all the available cores by spreading the reading of
the files and making sure that the data of interest are gathered in the proper order. We use
the multi-processing capabilities of the various languages to slightly modify the scripts. For
each month, the daily files are read in by different threads (cores).The results are shown in
Table 4.2. We were able to fully complete the task with Python, R and Julia only. The Julia
script is fragile and we could run with 8 threads. We obtained unexpected error messages
Matlab and could not resolve the issues (we will continue to look into it). We did not try to do
the task in IDL because we could not find a simple IDL multi-processing documentation that
could help us.

Language Elapsed time (s)

Python 273

Julia 520 (no plot)

IDL

R 420

Matlab

Table 4.2: Elapsed time (in seconds) obtained by manipulating 7305 NetCDF files using
multiple threading.

We observe that the use of multiple threads significantly reduces the processing time without
requiring more resources (all the calculations were done within a node). The multi-thread
processing scripts were written by making minor modifications of the serial ones. In fact, the
multi-thread scripts ended up being more modular (use of functions) and more readable.

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
12

Problem 5

We implement the Belief Propagation calculations that can be seen as a repeated sequence
of matrix multiplications, followed by normalization. The Matlab, C and Julia codes are
shown in the Justin Domke's weblog (Domke 2012). We report the computing times for
various values of the number of iterations (N) when the matrix dimension is 5000x5000.

Language Option N=250 N=500 N=1000

Python 5.01 9.5 18.8

Julia 4.4510 8.1424 15.137

R 42.302 82.963 164.33

IDL 15.472 30.085 59.318

Matlab 2.3930 4.5720 8.4749

Fortran gfortran 5.1843 9.5965 18.457

gfortran -O3 5.2243 9.7126 18.705

ifort 4.6922 9.0045 20.881

ifort -O3 4.6962 9.0245 17.709

C gcc 3.8300 7.5700 15.160

gcc -Ofast 3.5400 7.1000 14.240

icc 1.7800 3.4400 6.9000

icc -Ofast 1.7300 3.4600 6.9300

Scala

Table 5.1: Elapsed times (in seconds) obtained by doing the Belief Propagation
computations.

Problem 6

We perform calculations for the implementation of a Metropolis-Hastings algorithm using
a two dimeensional distribution (Domke 2012). Results are shown when the number of
iterations (N) varies.

https://en.wikipedia.org/wiki/Belief_propagation
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
13

Language Option N=5000 N=10000 N=15000

Python 0.02 0.05 0.08

Julia 0.000228 0.000441 0.000676

R 0.088 0.169 0.243

IDL 0.00960 0.01874 0.0393

Matlab 0.02619 0.06244 0.0870

Fortran gfortran 0.00000 0.00000 0.00000

gfortran -O3 0.00000 0.00000 0.00000

ifort 0.00000 0.004 0.004

ifort -O3 0.004 0.00000 0.008

C gcc 0.00000 0.00000 0.00000

gcc -Ofast 0.00000 0.00000 0.00000

icc 0.00000 0.00000 0.00000

icc -Ofast 0.00000 0.00000 0.00000

Scala 0.011 0.013 0.017

Table 6.1: Elapsed times (in seconds) obtained by doing the Metropolis algorithm
computations.

Remarks:

1. All the experiments were done on a Linux cluster (with thousands of nodes) shared by hundreds of users.
2. We did not attempt to optimize any of the scripts we wrote. It is possible that developers of each languages

may come with faster approaches to solve each of the problems presented here.
3. We also did the tests with Python 3.5 and we obtained the same results as in Python 2.7.
4. Using IDL and Matlab was difficult because at several occasions, there was not enough available licence.
5. When we install an open-source software, our preference is to do it from source because we have more

control over the installation process (we can freely select any configuration we need). In addition, we want
to be able to create a self-contained module (for instance Python together with Numpy, SciPy, Matplotlib,
NetCDF4, etc.) and make it available to users. We are not sure that we can achieve it with Julia that seems
to assume that each user is expected to add/build on his/her own packages on top of Julia.

References

1. Justin Domke, Julia, Matlab and C, September 17, 2012.
2. Michael Hirsch, Speed of Matlab vs. Python Numpy Numba CUDA vs Julia vs IDL, June 2016.
3. Murli M. Gupta, A fourth Order poisson solver, Journal of Computational Physics, 55(1):166-172, 1984.

https://www.scivision.co/speed-of-matlab-vs-python-numpy-numba

Basic Comparison of Python, Julia, R, Matlab and IDL

Generated by Jive SBS on 2021-07-23-04:00
14

4. Jean Francois Puget, A Speed Comparison Of C, Julia, Python, Numba, and Cython on LU Factorization,
January 2016.

5. Alex Rogozhnikov, Log-likelihood benchmark, September 2015.
6. Sebastian Raschka, Numeric matrix manipulation - The cheat sheet for MATLAB, Python Nympy, R and

Julia, June 2014.
7. Yousef Saad, Iterative Methods for Sparse Linear Systems (2 ed.), SIAM, ISBN 0898715342, 200366

Source Files

All the source files for the problems presented here are in the attached file:
sourceFiles.tar.gz

If you have a comment/suggestion/question, contact Jules Kouatchou
(Jules.Kouatchou@nasa.gov)

https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
http://arogozhnikov.github.io/2015/09/08/SpeedBenchmarks.html
http://sebastianraschka.com/Articles/2014_matrix_cheatsheet.html
http://sebastianraschka.com/Articles/2014_matrix_cheatsheet.html
mailto:Jules.Kouatchou@nasa.gov

