
Generated by Jive SBS on 2021-07-23-04:00
1

Basic Comparison of Python, Julia, Matlab,
IDL and Java (2018 Edition)

Announcement: We have started the process of making this project open source. The
source codes are being rewritten for clarity, simplicity and consistency. As soon as the
process is completed, all the new codes and running scripts will be made available.

--

HISTORY:

• September 13, 2018: Added R numbers for the Fibonacci Number test case (Problem 1)
• September 13, 2018: Corrected R numbers for the Laplace Equation test case (Problem 5)

This report is the continuation of the work done in:

Basic Comparison of Python, Julia, R, Matlab and IDL

Here we:

1. Add new versions of languages
2. Add JAVA
3. Add more test cases.
4. For each language, consistantly use the same method to measure the elapsed time.
5. Provide source codes for all the test cases.
6. Present all the timing results to the fourth digit accuracy (any number less tha 0.0001 is rounded to 0).

https://modelingguru.nasa.gov/docs/DOC-2625

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
2

While reading this report, be mindful of the following:

• Our intention is not to claim that one language is better than the other.
• In our work, we are often asked to address users’ issues on the computing languages Python,

Matlab, IDL, etc. We only have few hours to understand the coding principles of those
languages and quickly write codes that resolve users’ issues. We present results in the point
of view of a novice programmer.

• If you are an advanced programmer or a language developer and you have results (obtained with
optimization techniques) you want to share, feel free to contact us (with a web link) and we wil provide a
link to your results here.

All the experiments presented here were done on Intel Xeon Haswell processor node.
Each node has 28 cores (2.6 GHz each) and 128 Gb of available memory. We consider the
following versions of the languages:

Language Version Free?

Python 2.7.1 Yes

Julia 0.6.2 Yes

JAVA 1.8.0_92 Yes

IDL 8.5 No

Matlab R2017a No

R Yes

GNU Compilers 7.3 Yes

Intel Compilers 18.0.1.163 No

Scala 2.12.4 Yes

Problem 1: Fibonacci Number

The Fibonacci numbers are the sequence of numbers defined by the linear
recurrence equation:

https://www.python.org/
http://julialang.org/
https://java.com/en/
http://www.harrisgeospatial.com/ProductsandSolutions/GeospatialProducts/IDL.aspx
https://www.mathworks.com/help/matlab/
https://gcc.gnu.org/
https://software.intel.com/en-us/intel-compilers
https://www.scala-lang.org/
https://en.wikipedia.org/wiki/Fibonacci_number
http://mathworld.wolfram.com/images/equations/FibonacciNumber/Inline1.gif

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
3

with .

Fibonacci numbers find applications in the fields of economics, computer science, biology,
combinatoric, etc.

We implemented both the iterative method and the recursive one, and we record the
elepased time for generating the Fibonacci numbers for a given n.

Language Option n=25 n=35 n=45

Python 0 0 0

Python + Numba 0 0 0

Julia 0 0 0

IDL 0 0 0

Matlab 0.0098 0.0032 0.0025

R 0.034 0.034 0.034

JAVA 0 0 0

Scala 0 0 0

Fortran gfortran 0 0 0

gfortran -O3 0 0 0

ifort 0 0 0

ifort -O3 0 0 0

C gcc 0 0 0

gcc -Ofast 0 0 0

icc 0 0 0

icc -Ofast 0 0 0

http://mathworld.wolfram.com/images/equations/FibonacciNumber/NumberedEquation1.gif
http://mathworld.wolfram.com/images/equations/FibonacciNumber/Inline2.gif

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
4

Table 1.1: Elapsed times (in seconds) obtained by computing Fibonacci numbers using then
iterative method.

Language Option n=25 n=35 n=45

Python 0.0211 2.5284 311.2046

Python + Numba 0.03 0.1 8.82

Julia 0 0.0335 4.130

IDL 0.0301 2.2573 304.2285

Matlab 0.0128 0.5149 58.9283

R 0.008 0.008 0.008

JAVA 0.0016 0.0414 4.8609

Scala 0.001 0.045 5.289

Fortran gfortran 0 0.0840 10.4326

gfortran -O3 0 0.0280 3.4602

ifort 0 0 0

ifort -O3 0 0 0

C gcc 0 0.04 5.07

gcc -Ofast 0 0.01 1.66

icc 0 0.02 3.15

icc -Ofast 0 0.02 3.07

Table 1.2: Elapsed times (in seconds) obtained by computing Fibonacci numbers using the
recursive method.

Problem 2: Copy Arrays

This test case is meant to show how fast languages access non-contiguous memory
locations.

Consider an arbitrary nxnx3 matrix A. We want to perform the following operations on A:

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
5

A(i,j,1) = A(i,j,2)
A(i,j,3) = A(i,j,1)
A(i,j,2) = A(i,j,3)

For instance, in Python the code looks like:

for i in range(n):
 for j in range(n):
 A[i,j,1] = A[i,j,2]
 A[i,j,3] = A[i,j,1]
 A[i,j,2] = A[i,j,3]

The above code segment uses loops. We are also interested on how the same operations
are done using vectorization:

A[:,:,1] = A[:,:,2]
A[:,:,3] = A[:,:,1]
A[:,:,2] = A[:,:,3]

The problem allows us to see how each language handles loops and vectorization. We
record the elapsed time needed to do the array assignments.

Language Option n=5000 n=7000 n=9000

Python 18.6055 37.1279 61.0172

Python + Numba 0.26 0.26 0.34

Julia 0.0907 0.1386 0.2274

IDL 6.8773 13.2422 21.9349

Matlab 0.2787 0.5223 0.8437

R 19.750 38.635 63.820

JAVA 0.1420 0.2680 0.4350

Scala 0.204 0.349 0.51

Fortran gfortran 0.1760 0.3480 0.5760

gfortran -O3 0.0720 0.1360 0.2200

ifort 0.0680 0.1360 0.2120

ifort -O3 0.0680 0.1320 0.2120

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
6

C gcc 0.1700 0.3400 0.5700

gcc -Ofast 0.0900 0.1800 0.2900

icc 0.0900 0.1800 0.3000

icc -Ofast 0.0900 0.1800 0.3000

Table 2.1: Elapsed times (in seconds) obtained by copying a matrix using loops.

Language Option n=5000 n=7000 n=9000

Python 0.4953 0.9689 1.5962

Python + Numba 0.834 1.29 1.96

Julia 0.2926 0.5471 0.8964

IDL 0.4091 0.8093 1.3315

Matlab 0.2845 0.5841 0.9193

R 2.956 5.785 9.566

Fortran gfortran 0.0960 0.2480 0.3080

gfortran -O3 0.0920 0.1840 0.3040

ifort 0.1200 0.2320 0.3760

ifort -O3 0.1200 0.2320 0.3880

Table 2.2: Elapsed times (in seconds) obtained by copying a matrix using vectorization.

Problem 3: Matrix Multiplication

We multiply two randomly generated nxn matrices A and B:

C=AxB

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
7

This problem shows the importance of taking advantage of built-in libraries available in
each language. The elapsed times presented here only measure the times spent on the
multiplication (as the size of the matrix varies).

Language Option n=1500 n=1750 n=2000

Python intrinsic 0.58 0.96 0.97

Python + Numba (loop) 3.64 6.33 13.57

Julia intrinsic 0.1494 0.2391 0.3497

IDL intrinsic 0.3028 0.3613 0.4797

Matlab intrinsic 0.9567 0.2575 0.2943

R 0.920 1.158 0.951

JAVA (loop) 6.8530 13.4700 29.2320

Scala (loop) 9.258 14.482 23.363

Fortran gfortran (loop) 17.2450 31.2299 60.1837

gfortran -O3 (loop) 3.3202 5.3043 12.3367

gfortran (matmul) 0.3520 0.5600 0.8280

gfortran -O3
(matmult)

0.3480 0.5560 0.7840

ifort (loop) 1.1400 1.8081 3.1001

ifort -O3 (loop) 0.5200 0.8240 1.2760

ifort (matmul) 1.1400 1.8121 2.9001

ifort -O3 (matmul) 1.1400 1.8121 2.9881

ifort (DGEMM) 0.2120 0.2280 0.3320

C gcc (loop) 13.4900 20.9600 31.4800

gcc -Ofast (loop) 1.3500 2.3900 4.3700

icc (loop) 1.2100 2.1600 4.0200

icc -Ofast (loop) 1.1500 1.7000 2.6600

Table 3.1: Elapsed times (in seconds) obtained by multiplying two randomly generated
matrices.

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
8

Problem 4: Gauss-Legendre Quadrature

The Gauss-Legendre quadrature formulas approximate the integral of a functionby a
weighted sum of function-values. When m function-values are used, the formula is exact for
polynomials of degree zero through 2m — 1.

Language Option n=50 n=75 n=100

Python 0.1345 0.0183 0.0186

Julia 1.2962 1.3553 1.3556

IDL 0.0006 0.0009 0.0014

R

JAVA

Matlab 0.7739 0.7197 0.0853

Fortran gfortran 0 0.004 0.008

gfortran -O3 0 0.004 0.008

ifort 0 0.004 0.008

ifort -O3 0 0.004 0.008

C gcc

gcc -Ofast

icc

icc -Ofast

Table 4.1: Elapsed times (in seconds) obtained by performing the Gauss-Legendre
qudrature.

Problem 5: Numerical Approximation of the 2D Laplace Equation

https://en.wikipedia.org/wiki/Gaussian_quadrature

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
9

We find the numerical solution of the 2D Laplace equation:

Uxx + Uyy = 0

We use the Jacobi iterative solver. We are interested in fourth-order compact finite
difference scheme (Gupta, 1984):

Ui,j = (4(Ui-1,j + Ui,j-1 + Ui+1,j + Ui,j+1) + Ui-1,j-1 + Ui+1,j-1 + Ui+1,j+1 + Ui-1,j+1)/20

The Jacobi iterative solver stops when the difference of two consecutive approximations falls
below 10^{-6}.

Language Option n=100 n=150 n=200

Python 142.7886 705.268 2188.007

Python + Numba 1.2764 5.4262 16.396

Julia 1.0309 5.1724 16.1657

optimized 1.0987 5.5039 17.1473

optimized_smind 0.6215 3.0289 9.4964

IDL 83.6360 416.5523 1298.777

Matlab 1.8199 4.9914 9.1465

R 128.131 635.674 1971.329

JAVA 0.4850 2.0210 5.5980

Scala 0.545 2.289 6.202

Fortran gfortran 0.840 3.800 10.945

gfortran -O3 0.668 3.068 8.881

ifort 0.5360 2.4680 7.1520

ifort -O3 0.5360 2.4640 7.1520

C gcc 0.500 2.4200 7.7000

gcc -Ofast 0.2100 1.0400 3.1800

gcc -fPIC -Ofast -O3
-xc -shared

1.1410 5.5953 17.3381

https://gist.github.com/SimonDanisch/ae046f3a0c78b26242e78fa9b139aa11#file-benchmark-jl
https://gist.github.com/SimonDanisch/ae046f3a0c78b26242e78fa9b139aa11#file-benchmark-jl
https://gist.github.com/SimonDanisch/ae046f3a0c78b26242e78fa9b139aa11#file-benchmark-jl
https://gist.github.com/SimonDanisch/ae046f3a0c78b26242e78fa9b139aa11#file-benchmark-jl

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
10

icc 0.4500 2.2300 6.7900

icc -Ofast 0.3200 1.6000 4.8700

Table 5.1: Elapsed times (in seconds) obtained by numerically solving the Posson equation
using a Jacobi iterative solver with loops.

Language Option n=100 n=150 n=200

Python 2.3209 10.7638 41.2477

Python + Numba 3.5021 12.5186 36.1285

Julia optimized_vectorized 2.3787 14.0944 42.1255

IDL 1.9159 10.1320 32.2211

Matlab 3.5102 6.4710 16.4999

R 21.177 102.229 333.366

Fortran gfortran 0.876 3.948 11.329

gfortran -O3 0.3560 1.7880 5.0880

ifort 0.3000 1.5440 4.4400

ifort -O3 0.2840 1.5680 4.4520

Table 5.2: Elapsed times (in seconds) obtained by numerically solving the Posson equation
using a Jacobi iterative solver with vectorization.

Problem 6: Belief Propagation

The Belief Propagation can be applied to fields such as speech recognition, computer
vision, image processing, medical diagnostics, parity check codes, etc. Its calculations
involve a repeated sequence of matrix multiplications, followed by normalization. The
Matlab, C and Julia codes are shown in the Justin Domke's weblog (Domke 2012). We

https://gist.github.com/SimonDanisch/ae046f3a0c78b26242e78fa9b139aa11#file-benchmark-jl
https://en.wikipedia.org/wiki/Belief_propagation

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
11

report the computing times for various values of the number of iterations (N) when the matrix
dimension is 5000x5000.

Language Option n=250 n=500 n=1000

Python 4.8186 7.3240 13.9176

Julia 3.957 7.684 14.855

IDL 18.3229 35.8977 71.0820

Matlab 2.6299 4.0708 6.8691

R 25.463 46.985 92.654

JAVA 321.403 642.395 1284.106

Fortran gfortran 22.5574 39.9224 89.9696

gfortran -O3 5.1603 9.5885 18.7051

ifort 4.6082 8.8605 17.3810

ifort -O3 4.6322 8.7325 17.4130

C gcc 2.6400 5.2800 10.5700

gcc -Ofast 2.3500 4.7200 9.4400

icc 1.4500 2.9000 5.8000

icc -Ofast 1.4400 2.9000 5.8100

Table 6.1: Elapsed times (in seconds) obtained by doing the Belief Propagation
computations.

Problem 7: Metropolis-Hastings Algorithm

The Metropolis–Hastings (M–H) algorithm is a method for obtaining random
samples from a probability distribution. We perform calculations for the implementation
of a Metropolis-Hastings algorithm using a two dimensional distribution (Domke 2012).
Results are shown when the number of iterations (N) varies.

Language Option n=5000 n=10000 n=15000

Python 0.02642 0.0637 0.0937

https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
12

Julia 0.0002 0.0004 0.0006

IDL 0.0058 0.0219 0.0291

Matlab 0.0164 0.0194 0.0276

R 0.105 0.166 0.24

JAVA 0.006 0.007 0.009

Scala 0.009 0.012 0.014

Fortran gfortran 0 0.0040 0.0040

gfortran -O3 0 0 0

ifort 0 0 0

ifort -O3 0 0.0040 0

C gcc 0 0 0

gcc -Ofast 0 0 0

icc 0 0 0

icc -Ofast 0 0 0

Table 7.1: Elapsed times (in seconds) obtained by doing the Metropolis algorithm
computations.

Problem 8: Manipulation of netCDF Files

We have a set of daily NetCDF files (7305) covering a period of 20 years (1990-2009). The
files for a given year are in a sub-directory labeled YYYY (for instance 1990, 1991, 1992,
etc.). We want to write a script that opens each file, reads a three-dimensional variable
(longitude/latitude/level), and manipulates it. A pseudo code for the script reads:

Loop over the years
 Obtain the list of NetCDF files
 Loop over the files
 Read the variable (longitude/latitude/level)

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
13

 Compute the zonal mean average (new array of latitude/level)
 Extract the column array at latitude 86 degree South
 Append the column array to a "master" array (or matrix)

The goal here is to be able to do a generate the data to do a contour plot that looks like
(obtained with Python):

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
14

https://modelingguru.nasa.gov/servlet/JiveServlet/showImage/1527/fig_TimeSeries_AgeOfAir.png

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
15

This is the kind of problems that a typical user we support faces: a collection of thousands of
files that needs to be manipulated to extract the desired information. Having tools that allow
us to quickly read data from files (in formats such as NetCDF, HDF4, HDF5, grib) is critical
for the work we do.

Note that unlike in Problem 4 of the previous report (where the daily files are in directories
associated with months), the daily files to be read in in this case are stored in directories
associated with the years. The access to the files is easier in this current problem and we
expect the timing numbers to be reduced.

We report in Table 8.1 the elapsed times it took to solve Problem 8 with the various
languages.

Language Elapsed Time (s)

Python 558.4496

Julia 580.5683

IDL 504.5634

Matlab 646.2261

Table 8.1: Elapsed time (in seconds) obtained by manipulating 7305 NetCDF files on a
single processor.

All the above runs were conducted on a node that has 28 cores. Basically, only one core
was used. We want to take advantage of all the available cores by spreading the reading of
the files and making sure that the data of interest are gathered in the proper order. We use
the multi-processing capabilities of the various languages to slightly modify the scripts. For

https://modelingguru.nasa.gov/docs/DOC-2625

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
16

each year, the daily files are read in by different threads (cores).The results are shown in
Table 8.2.

Language numThreads=2 numThreads=4 numThreads=8 numThreads=16

Python 352.7964 238.1065 170.9945 105.3949

Table 8.2: Elapsed time (in seconds) obtained by manipulating 7305 NetCDF files using
multiple threading.

Problem 9: Function Evaluations

We create an array x of length n and loop several times to perform the six operations:

y = sin(x)
x = asin(y)
y = cos(x)
x = acos(y)
y = tan(x)
x = atan(y)

Language n=80000 n=90000 n=100000

Python 52.1014 58.4591 64.8276

Julia 55.5550 62.3450 69.2350

IDL 37.4798 42.0187 34.8829

Matlab 5.1866 5.6523 4.6116

R 89.500 101.439 112.269

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
17

Problem 10: Simple FFT

We create a nxn random complex matrix M and compute the following:

r = fft(M)
r = abs(r)

Language n=10000 n=15000 n=20000

Python 10.5087 25.5764 45.1959

Julia 3.916 11.489 20.632

IDL 16.6154 36.5711 73.3394

Matlab 2.6606 6.0293 10.7011

R 60.722 157.626 269.651

Problem 11: Square Root of a Matrix

We consider an nxn matrix A with 6s on the diagonal and 1s everywhele else. We are lloking
for the matrix B such that BxB = A. We record the time for determining B.

Language Option n=1000 n=2000 n=4000

Python SciPy sqrtm 2.2227 5.2814 45.7643

Julia sqrtm 0.4129 2.511 19.111

Matlab sqrtm 0.9683 1.3916 2.3767

R 1.057 3.602 19.122

Problem 12: Look and Say Sequence

https://en.wikipedia.org/wiki/Square_root_of_a_matrix
https://en.wikipedia.org/wiki/Look-and-say_sequence

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
18

We write codes to determine the look and say number of order n. Instead of starting with a
single digit, we begin with 1223334444.

This test case highlights how languages manipulate strings of arbitrary length.

Language Options n=40 n=45 n=48

Python 2.2921 37.4429 224.4362

Julia 2.769 44.333 345.069

IDL 19.9563 296.4768 1570.4234

Matlab 412.5993 4501.6751

R 0.509 1.678 3.611

Java 0.0487 0.0947 0.1582

Scala 0.0390 0.1020 0.1720

Fortran gfortran 0.0160 0.0200 0.0200

gfortran -O3 0.0200 0.0240 0.0240

ifort 0.0120 0.0160 0.0120

ifort -O3 0.0160 0.0200 0.0080

C gcc 0.0800 0.2600 0.5300

gcc -Ofast 0.0400 0.2500 0.5000

icc 0.0700 0.2600 0.4800

icc -Ofast 0.0700 0.2100 0.4600

References

1. Justin Domke, Julia, Matlab and C, September 17, 2012.
2. Michael Hirsch, Speed of Matlab vs. Python Numpy Numba CUDA vs Julia vs IDL, June 2016.
3. Murli M. Gupta, A fourth Order poisson solver, Journal of Computational Physics, 55(1):166-172, 1984.
4. Jean Francois Puget, A Speed Comparison Of C, Julia, Python, Numba, and Cython on LU Factorization,

January 2016.
5. Alex Rogozhnikov, Log-likelihood benchmark, September 2015.
6. Sebastian Raschka, Numeric matrix manipulation - The cheat sheet for MATLAB, Python Nympy, R and

Julia, June 2014.
7. Yousef Saad, Iterative Methods for Sparse Linear Systems (2 ed.), SIAM, ISBN 0898715342, 200366

https://www.scivision.co/speed-of-matlab-vs-python-numpy-numba
https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
http://arogozhnikov.github.io/2015/09/08/SpeedBenchmarks.html
http://sebastianraschka.com/Articles/2014_matrix_cheatsheet.html
http://sebastianraschka.com/Articles/2014_matrix_cheatsheet.html

Basic Comparison of Python, Julia, Matlab, IDL and Java (2018 Edition)

Generated by Jive SBS on 2021-07-23-04:00
19

Source Files

All the source files for the problems presented here are in the attached file:
sourceFiles2018.tar.gz

If you have a comment/suggestion/question, contact Jules Kouatchou
(Jules.Kouatchou@nasa.gov)

mailto:Jules.Kouatchou@nasa.gov

