
Generated by Jive SBS on 2021-07-23-04:00
1

Basic Comparison of Python, Julia, Matlab,
IDL and Java (2019 Edition)

Python, Julia, Java, Scala, IDL, Matlab, R, C, Fortran

Authors:
• Jules Kouatchou (jules.kouatchou@nasa.gov)
• Alexander Medema (alexander.medema@gmail.com)

NOTICE: This project is now Open-Source. All the source files are available
github.com.

We plan to test the updated version of Julia in the future and add results with Python
\Numba.

See the 2018 edition for previous source code.

Introduction
We use simple test cases to compare various high level programming languages. We

implement the test cases from an angle of a novice programmer who is not familiar with the optimization

techniques available in the languages. The goal is to highlight the strengths and weaknesses of each language

but not to claim that one language is better than the others. Timing results are presented in seconds to four

digits of precision, and any value less than 0.0001 is considered to be 0.

mailto:Jules.Kouatchou@nasa.gov
mailto:Alexander.Medema@nasa.gov
https://modelingguru.nasa.gov/docs/DOC-2676

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
2

The tests presented here are run on an Intel Xeon Haswell processor node. Each node has 28 cores (2.6 GHz

each) and 128 GB of available memory. The Python, Java, and Scala tests are also run on a Mac computer

with an Intel i7-7700HQ (4 cores, 2.8 GHz each) with 16 GB of available memory to compare with the Xeon

node. We consider the following versions of the languages:

Language Version Free?

Python 3.7 Yes

Julia 0.6.2 Yes

Java 10.0.2 Yes

Scala 2.13.0 Yes

IDL 8.5 No

R 3.6.1 Yes

Matlab R2017b No

GNU Compilers 9.1 Yes

Intel Compilers 18.0.5.274 No

The GNU and Intel compilers are used for C and Fortran. These languages are included
to serve as a baseline, which is why their tests also come with optimized (-O3, -Ofast)
versions.

The test cases are listed in four categories:

• Loops and Vectorization
• String Manipulations
• Numerical Calculations
• Input/Output

Each test is "simple" enough to be quickly written in any of the languages and is meant to
address issues such as:

• Access of non-contiguous memory locations
• Use of recursive functions,
• Utilization of loops or vectorization,

https://www.python.org/
http://julialang.org/
https://java.com/en/
https://www.scala-lang.org/
http://www.harrisgeospatial.com/ProductsandSolutions/GeospatialProducts/IDL.aspx
https://www.mathworks.com/help/matlab/
https://gcc.gnu.org/
https://software.intel.com/en-us/intel-compilers

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
3

• Opening of a large number of files,
• Manipulation of strings of arbitrary lengths,
• Multiplication of matrices,
• Use of iterative solvers
• etc.

The source files are contained in the directories:

C\ Fortran\ IDL\ Java\ Julia\ Matlab\ Python\ R\ Scala\

There is also a directory

Data\

that contains a Python script that generates the NetCDF4 files needed for the test case on reading a large

collection of files. It also has sample text files for the "Count Unique Words in a File" test case.

Remark:

In the results presented below, we used an older version of Julia because we had difficulties installing the

latest version of Julia (1.1.1) on the Xeon Haswell nodes. In addition, the Python experiments did not include

Numba because the Haswell nodes we had access to, use an older version of the OS, preventing Numba to be

properly installed.

Loops and Vectorization
• Copying Multidimensional Arrays

Given an arbitrary n x n x 3 matrix A, we perform the operations:

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
4

A(i, j, 1) = A(i, j, 2)
A(i, j, 3) = A(i, j, 1)
A(i, j, 2) = A(i, j, 3)

using loops and vectorization. This test case is meant to measure the speed of languages'
access to non-contiguous memory locations, and to see how each language handles loops
and vectorization.

Table CPA-1.0: Elapsed times to copy the matrix elements using loops on the Xeon node.

Language Option n=5000 n=7000 n=9000

Python 16.2164 31.7867 52.5485

Julia 0.0722 0.1445 0.2359

Java 0.1810 0.3230 0.5390

Scala 0.2750 0.4810 0.7320

IDL 6.4661 11.9068 19.4499

R 22.9510 44.9760 74.3480

Matlab 0.2849 0.5203 0.8461

Fortran gfortran 0.1760 0.3480 0.5720

gfortran -O3 0.0680 0.1720 0.2240

ifort 0.0680 0.1360 0.2240

ifort -O3 0.0680 0.1360 0.2800

C gcc 0.1700 0.3400 0.5600

gcc -Ofast 0.0900 0.1800 0.3100

icc 0.1000 0.1800 0.3000

icc -Ofast 0.1000 0.1800 0.3000

Table CPA-1.1: Elapsed times to copy the matrix elements using loops on the i7 Mac.

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
5

Language n=5000 n=7000 n=9000

Python 18.6675 36.4046 60.2338

Python (Numba) 0.3398 0.3060 0.3693

Java 0.1260 0.2420 0.4190

Scala 0.2040 0.3450 0.5150

Table CPA-2.0: Elapsed times to copy the matrix elements using vectorization on the Xeon
node.

Language Option n=5000 n=7000 n=9000

Python 0.4956 0.9739 1.6078

Julia 0.3173 0.5575 0.9191

IDL 0.3900 0.7641 1.2643

R 3.5290 6.9350 11.4400

Matlab 0.2862 0.5591 0.9188

Fortran gfortran 0.0960 0.2520 0.3240

gfortran -O3 0.0960 0.2440 0.3120

ifort 0.1400 0.2280 0.3840

ifort -O3 0.1200 0.2360 0.4560

Table CPA-2.1: Elapsed times to copy the matrix elements using vectorization on the i7
Mac.

Language n=5000 n=7000 n=9000

Python 0.5602 1.0832 1.8077

Python (Numba) 0.8507 1.3650 2.0739

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
6

String Manipulations
• Look and Say Sequence

The look and say sequence reads a single integer. In each subsequent entry, the number of

appearances of each integer in the previous entry is concatenated to the front of that integer. For example, an

entry of

1223

would be followed by

112213,

or "one 1, two 2's, one 3." Here, we start with the number

1223334444

and determine the look and say sequence of order n (as n varies). This test case highlights how

languages manipulate strings of arbitrary length.

Table LKS-1.0: Elapsed times to find the look and say sequence of order n on the Xeon
node.

Language Option n=40 n=45 n=48

https://en.wikipedia.org/wiki/Look-and-say_sequence

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
7

Python 2.0890 44.4155 251.1905

Java 0.0694 0.0899 0.1211

Scala 0.0470 0.1270 0.2170

IDL 20.2926 304.5049 1612.4277

Matlab 423.2241 6292.7255 exceeded time limit

Fortran gfortran 0.0080 0.0120 0.0120

gfortran -O3 0.0080 0.0120 0.0120

ifort 0.0040 0.0160 0.0120

ifort -O3 0.0080 0.0040 0.0080

C gcc 0.0600 0.1900 0.4300

gcc -Ofast 0.0400 0.1800 0.4000

icc 0.0600 0.1900 0.4100

icc -Ofast 0.0500 0.1900 0.4100

Table LKS-1.1: Elapsed times to find the look and say sequence of order n on the i7 Mac.

Language n=40 n=45 n=48

Python 1.7331 22.3870 126.0252

Java 0.0665 0.0912 0.1543

Scala 0.0490 0.0970 0.2040

• Unique Words in a File

We open an arbitrary file and count the number of unique words in it with the assumption that

words such as:

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
8

ab Ab aB a&*(-b: 17;A#~!b

are the same (so that case, special characters, and numbers are ignored). For our tests, we use

the four files:

world192.txt, plrabn12.txt, bible.txt, and book1.txt

taken from The Canterbury Corpus.

Table UQW-1.0: Elapsed times to count the unique words in the file on the Xeon node.

Language world192.txt

(19626 words)

plrabn12.txt

(9408 words)

bible.txt

(12605 words)

book1.txt

(12427 words)

Python (dictionary
method)

0.5002 0.1090 0.8869 0.1850

Python (set method) 0.3814 0.0873 0.7548 0.1458

Julia 0.2190 0.0354 0.3239 0.0615

Java 0.5624 0.2299 1.0135 0.2901

Scala 0.4600 0.2150 0.6930 0.2190

R 104.5820 8.6440 33.8210 17.6720

Matlab 3.0270 0.9657 6.0348 1.0390

Table UQW 1.1: Elapsed times to count the unique words in the file on the i7 Mac.

Language world192.txt

(19626 words)

plrabn12.txt

(9408 words)

bible.txt

(12605 words)

book1.txt

(12427 words)

http://corpus.canterbury.ac.nz/descriptions/

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
9

Python (dictionary
method)

0.3541 0.0866 0.7346 0.1448

Python (set method) 0.3685 0.0820 0.7197 0.1417

Java 0.5129 0.2530 0.9183 0.3220

Scala 0.5810 0.1540 0.6650 0.2330

Numerical Computations
• Fibonacci Sequence

The Fibonacci Sequence is a sequence of numbers where each successive number is the sum of the two that

precede it:

Fn = Fn-1 + Fn-2.

Its first entries are

F0 = 0, F1 = F2 = 1.

Fibonacci numbers find applications in the fields of economics, computer science, biology,

combinatorics, etc. We measure the elapsed time when calculating an nth Fibonacci number.
The calculation times are taken for both iterative and recursive calculation methods.

Table FBC-1.0: Elapsed times to find the Fibonacci number using iteration on the Xeon
node.

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
10

Language Option n=25 n=35 n=45

Python 0 0 0

Julia 0 0 0

Java 0 0 0

Scala 0 0 0

IDL 0 0 0

R 0.0330 0.0320 0.0320

Matlab 0.0026 0.0034 0.0038

Fortran gfortran 0 0 0

gfortran -O3 0 0 0

ifort 0 0 0

ifort -O3 0 0 0

C gcc 0 0 0

gcc -Ofast 0 0 0

icc 0 0 0

icc -Ofast 0 0 0

Table FBC-1.1: Elapsed times to find the Fibonacci number using iteration on the i7 Mac.

Language n=25 n=35 n=45

Python 0 0 0

Python (Numba) 0.1100 0.1095 0.1099

Java 0 0 0

Scala 0 0 0

Table FBC-2.0: Elapsed times to find the Fibonacci number using recursion on the Xeon
node.

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
11

Language Option n=25 n=35 n=45

Python 0.0593 7.0291 847.9716

Julia 0.0003 0.0308 3.787

Java 0.0011 0.0410 4.8192

Scala 0.0010 0.0560 5.1400

IDL 0.0238 2.5692 304.2198

R 0.0090 0.0100 0.0100

Matlab 0.0142 1.2631 149.9634

Fortran gfortran 0 0.0840 10.4327

gfortran -O3 0 0 0

ifort 0 0 0

ifort -O3 0 0 0

C gcc 0 0.0400 5.0600

gcc -Ofast 0 0.0200 2.2000

icc 0 0.0300 3.1400

icc -Ofast 0 0.0200 3.2800

Table FBC-2.1: Elapsed times to find the Fibonacci number using recursion on the i7 Mac.

Language n=25 n=35 n=45

Python 0.0519 6.4022 800.0381

Python (Numba) 0.4172 43.7604 5951.6544

Java 0.0030 0.0442 5.0130

Scala 0.0010 0.0470 5.7720

• Matrix Multiplication

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
12

Two randomly generated n x n matrices A and B are multiplied. The time to perform the

multiplication is measured. This problem shows the importance of taking advantage of built-in libraries available

in each language.

Table MXM-1.0: Elapsed times to multiply the matrices on the Xeon node.

Language Option n=1500 n=1750 n=2000

Python intrinsic 0.1560 0.2430 0.3457

Julia intrinsic 0.1497 0.2398 0.3507

Java loop 13.8610 17.8600 32.3370

Scala loop 9.8380 19.1450 32.1310

R intrinsic 0.1600 0.2460 0.3620

Matlab intrinsic 1.3672 1.3951 0.4917

IDL intrinsic 0.1894 0.2309 0.3258

Fortran gfortran (loop) 17.4371 31.4660 62.1079

gfortran -O3 (loop) 3.3282 5.3003 12.1648

gfortran (matmul) 0.3840 0.6160 0.9241

gfortran -O3 (matmul) 0.3880 0.6160 0.9161

ifort (loop) 1.1401 1.8161 2.9282

ifort -O3 (loop) 1.1481 1.8081 2.9802

ifort (matmul) 1.1441 1.8121 2.9242

ifort -O3 (matmul) 0.5160 0.8281 1.2441

ifort (DGEMM) 0.2160 0.2360 0.3320

C gcc (loop) 13.2000 20.9800 31.4400

gcc -Ofast (loop) 1.4500 2.3600 4.0400

icc (loop) 1.2300 2.1500 4.0500

icc -Ofast (loop) 1.1500 1.7500 2.5900

Table MXM-1.1: Elapsed times to multiply the matrices on the i7 Mac.

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
13

Language Option n=1500 n=1750 n=2000

Python intrinsic 0.0906 0.1104 0.1611

Numba (loop) 9.2595 20.2012 35.3174

Java loop 32.5080 47.7680 82.2810

Scala loop 23.0540 38.9110 60.3180

• Belief Propagation Algorithm

Belief propagation is an algorithm used for inference, often in the fields of artificial intelligence,

speech recognition, computer vision, image processing, medical diagnostics, parity check codes, and others.

We measure the elapsed time when performing n iterations of the algorithm with a 5000x5000-element

matrix. The Matlab, C and Julia code is shown in Justin Domke's weblog (Domke 2012), which states that the

algorithm is "a repeated sequence of matrix multiplications, followed by normalization."

Table BFP-1.0: Elapsed time to run the belief propagation algorithm on the Xeon node.

Language Option n=250 n=500 n=1000

Python 3.7076 7.0824 13.8950

Julia 4.0280 7.8220 15.1210

Java 63.9240 123.3840 246.5820

Scala 53.5170 106.4950 212.3550

IDL 16.9609 33.2086 65.7071

R 23.4150 45.4160 89.7680

Matlab 1.9760 3.8087 7.4036

Fortran gfortran 21.0013 41.0106 87.6815

gfortran -O3 4.4923 8.2565 17.5731

ifort 4.7363 9.1086 17.8651

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
14

ifort -O3 4.7363 9.1086 21.1973

C gcc 2.6400 5.2900 10.5800

gcc -Ofast 2.4200 4.8500 9.7100

icc 2.1600 4.3200 8.6500

icc -Ofast 2.1800 4.3400 8.7100

Table BFP-1.1: Elapsed time to run the belief propagation algorithm on the i7 Mac.

Language n=250 n=500 n=1000

Python 2.4121 4.5422 8.7730

Java 55.3400 107.7890 214.7900

Scala 47.9560 95.3040 189.8340

• Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is an algorithm used to take random samples from a

probability distribution. This implementation uses a two-dimensional distribution (Domke 2012), and measures

the elapsed time to iterate n times.

Table MTH-1.0: Elapsed times to run the Metropolis-Hastings algorithm on the Xeon node.

Language Option n=5000 n=10000 n=15000

Python 0.0404 0.0805 0.1195

Julia 0.0002 0.0004 0.0006

Java 0.0040 0.0050 0.0060

Scala 0.0080 0.0090 0.0100

https://en.wikipedia.org/wiki/Metropolis?Hastings_algorithm

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
15

IDL 0.0134 0.0105 0.0157

R 0.0760 0.1500 0.2230

Matlab 0.0183 0.0211 0.0263

Fortran gfortran 0 0 0

gfortran -O3 0 0 0

ifort 0.0040 0 0

ifort -O3 0.0040 0.0040 0

C gcc 0 0 0

gcc -Ofast 0 0 0

icc 0 0 0

icc -Ofast 0 0 0

Table MTH-1.1: Elapsed times to run the Metropolis-Hastings algorithm on the i7 Mac.

Language n=5000 n=10000 n=15000

Python 0.0346 0.0638 0.0989

Java 0.0060 0.0040 0.0060

Scala 0.0090 0.0100 0.0130

• Fast Fourier Transform

We create an n x n matrix M that contains random complex values. We the compute the Fast

Fourier Transform (FFT) of M and the absolute value of the result. The FFT algorithm is used for signal

processing and image processing in a wide variety of scientific and engineering fields.

Table FFT-1.0: Elapsed times to compute the FFT on the Xeon node.

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
16

Language Option n=10000 n=15000 n=20000

Python intrinsic 8.0797 19.6357 34.7400

Julia intrinsic 3.979 11.490 20.751

IDL intrinsic 16.6699 38.9857 70.8142

R intrinsic 58.2550 150.1260 261.5460

Matlab intrinsic 2.6243 6.0010 10.66232

Table FFT-1.1: Elapsed times to compute the FFT on the i7 Mac.

Language Option n=10000 n=15000 n=20000

Python intrinsic 7.9538 21.5355 55.9375

• Iterative Solver

We use the Jacobi iterative solver to numerically approximate a solution of the two-dimensional

Laplace equation that was discretized with a fourth order compact scheme (Gupta, 1984). We record the

elapsed time as the number of grid points varies.

Table ITS-1.0: Elapsed times to compute the approximate solution using iteration on the
Xeon node.

Language Option n=100 n=150 n=200

Python 158.2056 786.3425 2437.8560

Julia 1.0308 5.1870 16.1651

Java 0.4130 1.8950 5.2220

Scala 0.540 2.1030 5.7380

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
17

IDL 73.2353 364.1329 1127.1094

R 157.1490 774.7080 2414.1030

Matlab 2.8163 5.0543 8.6276

Fortran gfortran 0.8240 3.7320 10.7290

gfortran -O3 0.6680 3.0720 8.8930

ifort 0.5400 2.4720 7.1560

ifort -O3 0.5400 2.4680 7.1560

C gcc 0.5000 2.4200 7.7200

 gcc -Ofast 0.2200 1.0500 3.1900

icc 0.4600 2.2300 6.7800

icc -Ofast 0.3300 1.6000 4.8700

Table ITS-1.1: Elapsed times to compute the approximate solution using iteration on the i7
Mac.

Language n=100 n=150 n=200

Python 174.7663 865.1203 2666.3496

Python (Numba) 1.3226 5.0324 15.1793

Java 0.4600 1.7690 4.7530

Scala 0.5970 2.0950 5.2830

Table ITS-2.0: Elapsed times to compute the approximate solution using vectorization on the
Xeon node.

Language Option n=100 n=150 n=200

Python 2.6272 14.6505 40.2124

Julia 2.4583 13.1918 41.0302

IDL 1.71192 8.6841 28.0683

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
18

R 25.2150 121.9870 340.4990

Matlab 3.3291 7.6486 15.9766

Fortran gfortran 0.8680 4.2040 11.5410

gfortran -O3 0.3600 1.8040 5.0880

ifort 0.2800 1.5360 4.4560

ifort -O3 0.2800 1.5600 4.4160

Table ITS-2.1: Elapsed times to compute the approximate solution using vectorization on the
i7 Mac.

Language n=100 n=150 n=200

Python 1.7051 7.4572 22.0945

Python (Numba) 2.4451 8.5094 21.7833

• Square Root of a Matrix

Given an n x n matrix A, we are looking for the matrix B such that:

B * B = A

B is the square root. In our calculations, we consider A with 6s on the diagonal and 1s
elsewhere.

https://en.wikipedia.org/wiki/Square_root_of_a_matrix

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
19

Table SQM-1.0: Elapsed times to calculate the square root of the matrix on the Xeon node.

Language n=1000 n=2000 n=4000

Python 1.0101 5.2376 44.4574

Julia 0.4207 2.5080 19.0140

R 0.5650 3.0660 19.2660

Matlab 0.3571 1.6552 2.6250

Table SQM-1.1: Elapsed times to calculate the square root of the matrix on the i7 Mac.

Language n=1000 n=2000 n=4000

Python 0.5653 3.3963 25.9180

• Gauss-Legendre Quadrature

Gauss-Legendre quadrature is a numerical method for approximating definite integrals. It

uses a weighted sum of n values of the integrand function. The result is exact if the integrand function is a

polynomial of degree 0 to 2n - 1. Here we consider an exponential function over the interval [-3, 3] and record

the time to perform the integral when n varies.

Table GLQ-1.0: Elapsed times to find the approximate value of the integral on the Xeon
node.

Language Option n=50 n=75 n=100

Python 0.0079 0.0095 0.0098

https://en.wikipedia.org/wiki/Gaussian_quadrature

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
20

Julia 0.0002 0.0004 0.0007

IDL 0.0043 0.0009 0.0014

R 0.0260 0.0240 0.0250

Matlab 0.7476 0.0731 0.4982

Fortran gfortran 0 0.0040 0.0080

gfortran -O3 0 0.0120 0.0120

ifort 0.0080 0.0080 0.0080

ifort -O3 0.0080 0.0040 0.0080

Table GLQ-1.1: Elapsed times to find the approximate value of the integral on the i7 Mac.

Language n=50 n=75 n=100

Python 0.0140 0.0035 0.0077

• Trigonometric Functions

We iteratively calculate trigonometric functions on an n-element list of values, and then compute

inverse trigonometric functions on the same list. The time to complete the full operation is measured as n

varies.

Table TRG-1.0: Elapsed times to evaluate the trigonometric functions on the Xeon node.

Language Options n=80000 n=90000 n=100000

Python 14.6891 16.5084 23.6273

Julia 55.3920 62.9490 69.2560

IDL 37.4413 41.9695 35.2387

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
21

R 91.5250 102.8720 113.8600

Matlab 5.2794 5.8649 6.3699

Scala 357.3730 401.8960 446.7080

Java 689.6560 774.9110 865.057

Fortran gfortran 53.4833 60.0317 66.6921

gfortran -O3 49.9271 56.0235 62.1678

ifort 18.6411 20.9573 23.2654

ifort -O3 18.6451 20.9573 23.2694

C gcc 107.4400 120.7300 134.0900

gcc -Ofast 93.0400 104.5700 116.0600

icc 76.2600 85.7900 95.3100

icc -Ofast 48.8400 54.9600 61.0600

Table TRG-1.1: Elapsed times to evaluate the trigonometric functions on the i7 Mac.

Language n=80000 n=90000 n=100000

Python 3.5399 6.1984 6.9207

• Munchausen Numbers

A Munchausen number is a natural number that is equal to the sum of its digits raised their own

power. In base 10, there are four such numbers: 0, 1, 3435 and 438579088. We determine how much time it

takes to find them.

Table MCH-1.0: Elapsed times to find the Munchausen numbers on the Xeon node.

Language Option Elapsed time

https://en.wikipedia.org/wiki/Perfect_digit-to-digit_invariant#cite_note-curious-1

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
22

Python 1130.6220

Julia 102.7760

Java 4.9008

Scala 72.9170

R exceeded time limit

IDL exceeded time limit

Matlab 373.9109

Fortran gfortran 39.7545

gfortran -O3 21.3933

ifort 29.6458

ifort -O3 29.52184

C gcc 157.3500

gcc -Ofast 126.7900

icc 228.2300

icc -Ofast 228.1900

Table MCH-1.1: Elapsed times to find the Munchausen numbers on the i7 Mac.

Language Elapsed time

Python 1013.5649

Java 4.7434

Scala 64.1800

Input/Output
• Reading a Large Collection of Files

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
23

We have a set of daily NetCDF files (7305) covering a period of 20 years. The files for a

given year are in a sub-directory labeled YYYY (for instance Y1990, Y1991, Y1992, etc.). We want to write

a script that opens each file, reads a three-dimensional variable (longitude/latitude/level), and manipulates it.

Pseudocode for the script reads:

 Loop over the years
 Obtain the list of NetCDF files
 Loop over the files
 Read the variable (longitude/latitude/level)
 Compute the zonal mean average (new array of latitude/level)
 Extract the column array at latitude 86 degree South
 Append the column array to a "master" array (or matrix)

The goal is to be able to do a generate the three-dimensional arrays (year/level/value) and carry out a contour

plot. This is the type of problem that a typical user we support faces: a collection of thousands of files that

need to be manipulated to extract the desired information. Having tools that can quickly read data from files (in

formats such as NetCDF, HDF4, HDF5, grib) is critical for the work we do.

Table RCF-1.0: Elapsed times to process the NetCDF files on the Xeon node.

Language Elapsed time

Python 660.8084

Julia 787.4500

IDL 711.2615

R 1220.222

Matlab 848.5086

Table RCF-1.1: Elapsed times to process the NetCDF files on the i7 Mac.

Language Elapsed time

Python 89.1922

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
24

Table RCF-2.0: Elapsed times to process the NetCDF files with Python using multiple cores on the Xeon node.

Cores Elapsed time

1 570.9791

2 317.6108

4 225.4647

8 147.4527

16 84.0102

24 59.7646

28 51.2191

Table RCF-2.1: Elapsed times to process the NetCDF files with Python using multiple cores on the i7 Mac.

Cores Elapsed time

1 84.1032

2 63.5322

4 56.6156

Summary with a Plot

In the plots below, we summarize the above timing results by using as reference the timing
numbers (last column only, i.e., largest problem size) obtained with GCC.

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
25

Findings

https://modelingguru.nasa.gov/servlet/JiveServlet/showImage/102-2783-15-1623/fig_languages_scatter.png
https://modelingguru.nasa.gov/servlet/JiveServlet/showImage/1625/fig_languages_histo.png

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
26

General:

• No single language outperforms the others in all tests.
• It is important to reduce the memory footprint by creating variables only when necessary and by "emptying"

variables that are no longer used.
• Using intrinsic functions results in improved performance compared to inline code for the same task.
• Julia and R offer simple benchmarking tools. We wrote a simple Python tool that allows us to run Python

test cases as many times as we wish.

Loops and Vectorization:

• Python (and Numpy), IDL, and R consistently run more quickly when vectorized compared to when using
loops.

• When using Numba, Python is faster with loops as long as Numpy arrays are used.
• With Julia, loops run more quickly than vectorized code.
• Matlab does not appear to change significantly in performance when using loops versus vectorization in a

case that involves no calculations. When calculations are performed, vectorized Matlab code is faster than
iterative code.

String Manipulations:

• Java and Scala appear to have notable performance relative to the other languages when manipulating
large strings.

Numerical Calculations:

• R appears to have notable performance relative to the other languages when using recursion.
• Languages' performance in numerical calculation relative to the others depends on the specific task.
• Matlab's intrinsic FFT function seems to run the most quickly.

Input/Output:

• While some of the languages run the test more quickly than others, running the test on a local Mac
instead of the processor node results in the largest performance gain. The processor node uses hard
drives, whereas the Mac has a solid-state disk. This indicates that hardware has a larger impact on I/O
performance than the language used.

Basic Comparison of Python, Julia, Matlab, IDL and Java (2019 Edition)

Generated by Jive SBS on 2021-07-23-04:00
27

Acknowledgements
This work partially funded by Michigan Space Grant Consortium, NASA grant
#NNX15AJ20H.

References
1. Justin Domke, Julia, Matlab and C, September 17, 2012.
2. Murli M. Gupta, A fourth Order poisson solver, Journal of Computational Physics, 55(1):166-172, 1984.

Source Files
We are currently working on making the files open-source.

https://justindomke.wordpress.com/2012/09/17/julia-matlab-and-c/

